Pharmacokinetic and Pharmacodynamic Characterisation of an Anti-Mouse TNF Receptor 1 Domain Antibody Formatted for In Vivo Half-Life Extension
نویسندگان
چکیده
Tumour Necrosis Factor-α (TNF-α) inhibition has been transformational in the treatment of patients with inflammatory disease, e.g. rheumatoid arthritis. Intriguingly, TNF-α signals through two receptors, TNFR1 and TNFR2, which have been associated with detrimental inflammatory and beneficial immune-regulatory processes, respectively. To investigate if selective TNFR1 inhibition might provide benefits over pan TNF-α inhibition, tools to investigate the potential impact of pharmacological intervention are needed. Receptor-deficient mice have been very insightful, but are not reversible and could distort receptor cross-talk, while inhibitory anti-TNFR1 monoclonal antibodies have a propensity to induce receptor agonism. Therefore, we set out to characterise a monovalent anti-TNFR1 domain antibody (dAb) formatted for in vivo use. The mouse TNFR1 antagonist (DMS5540) is a genetic fusion product of an anti-TNFR1 dAb with an albumin-binding dAb (AlbudAb). It bound mouse TNFR1, but not human TNFR1, and was an antagonist of TNF-α-mediated cytotoxicity in a L929 cell assay. Surprisingly, the dAb did not compete with TNF-α for TNFR1-binding. This was supported by additional data showing the anti-TNFR1 epitope mapped to a single residue in the first domain of TNFR1. Pharmacokinetic studies of DMS5540 in mice over three doses (0.1, 1.0 and 10 mg/kg) confirmed extended in vivo half-life, mediated by the AlbudAb, and demonstrated non-linear clearance of DMS5540. Target engagement was further confirmed by dose-dependent increases in total soluble TNFR1 levels. Functional in vivo activity was demonstrated in a mouse challenge study, where DMS5540 provided dose-dependent inhibition of serum IL-6 increases in response to bolus mouse TNF-α injections. Hence, DMS5540 is a potent mouse TNFR1 antagonist with in vivo pharmacokinetic and pharmacodynamic properties compatible with use in pre-clinical disease models and could provide a useful tool to dissect the individual contributions of TNFR1 and TNFR2 in homeostasis and disease.
منابع مشابه
A Fab-Selective Immunoglobulin-Binding Domain from Streptococcal Protein G with Improved Half-Life Extension Properties
BACKGROUND Half-life extension strategies have gained increasing interest to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Recently, we established an immunoglobulin-binding domain (IgBD) from streptococcal protein G (SpGC3) as module for half-life extension. SpGC3 is capable of binding to the Fc region as well as the CH1 domain of Fab arms under neutral an...
متن کاملImproved in vivo anti-tumor effects of IgA-Her2 antibodies through half-life extension and serum exposure enhancement by FcRn targeting
Antibody therapy is a validated treatment approach for several malignancies. All currently clinically applied therapeutic antibodies (Abs) are of the IgG isotype. However, not all patients respond to this therapy and relapses can occur. IgA represents an alternative isotype for antibody therapy that engages FcαRI expressing myeloid effector cells, such as neutrophils and monocytes. IgA Abs have...
متن کاملAnti-Tumour Effects of a Specific Anti-ADAM17 Antibody in an Ovarian Cancer Model In Vivo
ADAM 17 (TNF-α converting enzyme, TACE) is a potential target for cancer therapy, but the small molecule inhibitors reported to date are not specific to this ADAM family member. This membrane-bound metalloproteinase is responsible for ectodomain shedding of pathologically significant substrates including TNF-α and EGFR ligands. The aim of this study was to evaluate the pharmacokinetics, pharmac...
متن کاملPharmacodynamic analysis of an agonistic antibody to the costimulatory receptor GITR
GITR/TNFRSF18 is a member of the TNF-receptor superfamily preferentially expressed on regulatory T cells (Tregs) and activated T effector cells. Antibody agonists to GITR claim two distinct mechanisms to overcome the repressive tumor microenvironment and drive anti-tumor efficacy in vivo: receptor agonism (forward signaling) on T effector cells and FcgR-mediated Treg depletion. We sought to bet...
متن کاملDesign and Construction of a Novel Humanized Single-Chain Variable-Fragment Antibody against the Tumor Necrosis Factor alpha
The pro-inflammatory cytokine, TNF-α, which plays a major role in the development and persistence of inflammatory diseases, is the basis for the use of anti-TNF-α therapies. The neutralization of TNF-α or blockage of its binding to the corresponding receptor has mainly served as a therapeutic strategy against some diseases. This study aimed to investigate the production of a humanized single ch...
متن کامل